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Abstract 

This paper presents an experimental investigation of how a systematic variation in 
the cognitive demands on subjects affects the optimal play. The innovation of this paper 
is the choice of a game, which we call the Game of Position. This is a two-player zero-
sum game characterized by a dominant-strategy solution that involves iterative steps of 
reasoning. The equilibrium play is independent of mutual beliefs of players; hence 
inability of a subject to play the dominant-strategy unambiguously implies the failure of 
human reasoning prowess. We alter the two parameters of the game to vary the cognitive 
constraints, as represented by these steps of reasoning, on players. Our main substantive 
conclusion is that the frequency of the dominant-strategy play sharply increases as we 
limit the cognitive demands on players.  
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1. Introduction 

 
Cognition plays an important role in guiding human behavior. Since the work of 

Herbert Simon (1955), economists have recognized that individuals are characterized by 

limited cognitive capacity and therefore are capable of employing finite depths of 

reasoning. Given this critical element of human decision-making, how limited cognitive 

capacity interacts with economic decisions and influences quality of economic outcomes 

is a question of immense importance to economists. This paper experimentally 

investigates how incidence of the optimal play varies by systematically altering the 

cognitive demands on subjects in a game of economic interest, which we call the Game 

of Position, the structure of which is favorable for analyzing subjects’ depth of reasoning, 

as revealed by their choices1.  

The Game of Position is a finite two-player two-outcome strictly competitive 

game with perfect information. The game has a fixed number of positions that determine 

the length of the game tree (l). The first-mover (chosen randomly) starts from the first 

position and players alternate in making decisions. When a player must move, she has the 

option to add to her current position any number of positions between 1 and n (n < l). The 

game continues with the players alternating in moves, and the player who reaches the last 

position first wins a fixed prize and the other player receives nothing. Since the game is 

characterized by positions, and as we will see below that certain positions can be winning 

positions, we label it the Game of Position2. The game is characterized by a first-mover 

advantage and has a dominant-strategy. Ewerhart (2000) formally shows that any finite 

                                                 
1 See Crawford (2008), Crawford & Iriberri (2007a), Costa-Gomes & Crawford (2006), Johnson et al. 
(2002), Costa-Gomes et al. (2001), Nagel (1998, 1995) for examinations of degree of sophistication of 
players in various experimental games. For a survey of related research, see Camerer (2003, section 5.6). 
2 We name this class of games so by taking a cue from Baron (1974), who used the term ‘position’ to 
describe the solution process of a similar game.  
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two-player two-outcome strictly competitive game with perfect information must have a 

dominant strategy. The Game of Position belongs to this class of games. 

To illustrate how the game is played, let us consider an example, g(l = 23, n = 3). 

Figure 1 presents the game. If the first-mover chooses the positions 3, 7, 11, 15, 19 and 

finally 23, and no other positions in between, then this sequence of choices corresponds 

to the dominant-strategy play and ensures a sure win for her. The other player’s choices 

thus become entirely irrelevant. To see that the second-mover’s choices are irrelevant to a 

first-mover playing the dominant-strategy, consider the following. Suppose in the above 

example a first-mover reached 19, and now it is the second-player’s turn to move on from 

there. Then the second-mover can move onto any of these three positions: 20, 21 or 22. 

Given that the second-mover can choose one of those three positions, the first-mover on 

the next move can surely secure the final position 23 and thus win the game. So, being at 

position 19 ensures a victory for a first-mover irrespective of the second-mover’s 

decision. Applying this logic to other winning positions that an equilibrium first-mover 

must occupy, a second-mover’s choices at those positions are of no consequence. If both 

players know the winning strategy then it is obvious that the final outcome of the game is 

solely determined by which of the two players is assuming the role of the first-mover3.  

The dominant-strategy play in the Game of Position requires a first-mover to 

compute certain number of steps of reasoning (SOR) (e.g., five in g(23,3)), working 

backward from the very last position4. For example, a first-mover must realize that to 

                                                 
3 A second-mover may also play optimally if a first-mover fails to play according to the equilibrium 
strategy in the previous move. In that case, a second-mover who has already reasoned out the dominant-
strategy play would secure all the winning positions from that point onwards. 
4 Securing all the equilibrium positions in the Game of Position may therefore imply that a player must 
have been able to figure out all the SOR. However, there may be an important caveat.  A player may not 
understand the dominant-strategy play at all but may occupy all the wining positions by mere chance. 
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ensure a win (i.e., to be at 23) she must choose the second last position (i.e., 19). She also 

must realize that to secure the second last position, she must be at the third last position 

(i.e., 15) and so on5. How many SOR an equilibrium first-mover must compute in a Game 

of Position depends on the two parameters of the game, l and n. For a given l, decreasing 

(increasing) the n increases (reduces) the SOR involved with the dominant-strategy play. 

Similarly, for a given n, increasing (decreasing) the l increases (decreases) the SOR 

involved with the dominant-strategy play.  

Discovering the dominant-strategy play in this game however involves non-trivial 

mental computations. More importantly, the cognition ‘load’ is expected to increase, if 

the number of SOR associated with the dominant-strategy play is increased in a 

controlled manner. This seems natural to expect in view of the widely known fact that 

increasingly difficult mental computations require progressively more cognitive efforts 

(Simon, 1957) 6. Conditional on this maintained assumption, our objective in this paper is 

to consider a set of Games of Position that systematically vary in terms of the cognitive 

constraint (defined by the SOR for the dominant-strategy play) imposed on players, and 

study experimentally whether and how fast players learn to apply the full reasoning 

process. We conjecture that players (with plausibly limited reasoning power) are more 

                                                                                                                                                 
However the probability of such a pattern of play is extremely low in the games we study in this paper. We 
will discuss this issue in detail in Section 4. 
5 Although this scheme of thinking is exceedingly reminiscent of the backward induction algorithm, yet it 
is not backward induction since other player’s optimal choices at each subgame are not referenced in this 
game’s optimal solution process, which is central to the concept of the backward induction solution 
(Zermelo, 1913). In other words, the solution process considers only one player’s dominant-strategy choice 
at each subgame (provided it exists) regardless of the other player’s choice and works backwards in this 
manner.  
6 A voluminous literature by now has demonstrated that beyond a certain level of complication, humans’ 
logical apparatus ceases to function – a sign of bounded rationality. See Gabaix et al. (2006), Weibull 
(2004), Kahneman (2003), Gigerenzer & Selten (2002), Kahnemann (2002), Mullainathan (2002), Weibull 
& Lars-Göran Mattsson (2002), Camerer (1998), Ho et al. (1998), Rubinstein (1997), Stahl & Wilson 
(1995), Sargent (1993), Stahl & Wilson (1994), Gottinger (1982), Simon (1982) to get a comprehensive 
idea of the theoretical and experimental literatures.       
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likely to play the dominant-strategy play the shorter the l is (holding n fixed) or the larger 

the n is (holding l fixed). Although it can be argued, for example, that it is very natural 

that the incidence of the dominant-strategy play would go down as l increases (holding n 

fixed). This is because a player has to make relatively higher number of decisions in a 

game with higher l, therefore the scope of making errors would tend to go up. Since an 

error in this game is directly linked to the cognitive burden involved in computing 

successive steps of reasoning and the number of such steps strictly increases in l, it 

further strengthens our argument. 

The innovation of this paper lies in our choice of the game in so far measuring 

individuals’ depth of reasoning in the laboratory is concerned. The Game of Position is 

impervious to potential confounds that may cast any doubt on our measure of an 

individual’s depth of reasoning. Since the game has a solution in dominant strategies, a 

player’s belief about others is completely irrelevant. Failure to play according to the 

prescription of the game theory unequivocally implies a subject’s inability to figure out 

the dominant-strategy play. Furthermore, given that the optimal play in this game 

involves discovering certain number of SOR and this reasoning process is sequential in 

nature, it allows us to directly observe how many SOR an individual subject is capable of 

computing in a game. In this sense, our measurement of the individual reasoning process 

in this game is free from any possible confounds and offers a pure means of capturing the 

extent of the human reasoning prowess.   

One can think of myriad of examples that capture the fact that a decision-maker 

must decide at each stage what action to take next in order to optimize payoff attained at 

the end of the decision sequence. Examples include financial planning for retirement, 
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working towards a degree, working for a targeted weight reduction etc. Each of these 

tasks requires multiple-stage decisions that consist of a series of interdependent stages 

leading towards a final outcome and cognitive capacity underlies each example. Given 

the obvious analogy between the optimal solution in the Game of Position and multi-

stage decision-making process in the above examples, our experiment aims to shed light 

on whether individuals can adopt efficient planning method, and how the capacity to 

carry out a payoff-maximizing planning may interact with the cognitive demand of the 

task in question. Hence the game offers an ideal environment in which we can test the 

obvious connection between human reasoning-skill and the quality of economic outcome. 

We study four Games of Position that are uniquely defined by the two parameters 

of the game, l and n (these games are described in Section 3). The two parameters in 

these games are varied in a manner in our experiment that allows us to determine the 

effect on the dominant-strategy play of changing l while holding n fixed and vice-versa. 

Furthermore, the four games can be ranked in ascending order of the number of SOR 

associated with the dominant-strategy play.  

The results from the experiment provide substantive evidence that the frequency 

of the dominant-strategy play sharply increases as we limit the cognitive demand on 

players. The data confirm that the incidence of the equilibrium play is inversely related to 

the decision-tree length (holding n constant), but decreasing the maximum number of 

positions that a player on-move can add (holding l fixed) does not have any unequivocal 

effect on the dominant-strategy play. The analysis of the equilibrium play data in general 

implies that optimal dynamic planning can be significantly impeded by the complexity of 

the task related reasoning process. Learning dynamics indicate that initially many 
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subjects won a game by computing only the last few steps of the sequential reasoning 

process, but after gaining enough experience majority of them learnt to decipher 

additional steps of reasoning and played the dominant-strategy. We conjecture that this 

pattern of play may arise due to subjects’ inability to carry out all the steps of reasoning 

except the last few steps in initial stages of the play, or may be due to subjects’ initial 

tendency to play according to an ad-hoc forward-looking approach. Thus learning the 

optimal strategy by gradual experimentation is another way to think of our results. The 

rest of the paper is organized as follows. Section 2 discusses the relevant literature. 

Section 3 lays out the experimental design, Section 4 presents the results, and Section 5 

concludes. 

2. Relevant Literature 
 

This paper is closest to the experimental Beauty Contest game (BCG) literature 

(Nagel, 1995). In a typical BCG, a group of players simultaneously pick a number 

between [0, 100]. Whoever is closest to 2/3 of the average number wins a fixed sum of 

money. In case of a tie, winning prize is split among players. Iterated elimination of 

weakly dominated strategies predicts that each player should choose 0.  

However, results from Nagel (1995) are at odds with the equilibrium prescription. 

The average number chosen was around 35, and a handful of subjects chose 0. The 

experimental data from this game is often used as evidence of an individual’s limited 

reasoning ability. However such interpretation may be flawed. For example, a player 

endowed with deep reasoning power may still choose a number greater than 0 if she 
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holds non-equilibrium beliefs about others’ bounded ability to reason out7. Since 

discovering the optimal individual choice in this game needs consideration of players’ 

mutual beliefs about each others’ rationality, laboratory results of this game may not 

necessarily reflect an individual’s lack of ability to carry out certain rounds of iterated 

reasoning and thereby lead to an erroneous conclusion about subjects’ depth of 

reasoning8. The Game of Position avoids such confounds. Failure to play as per the 

dominant-strategy play unambiguously signifies a player’s incapacity to apply the full 

chain of reasoning process. 

There are very few papers that demonstrate that planning horizon may adversely 

affect the equilibrium play in other games. Aymard & Serra (2001) find in a resource 

extraction experiment that the length of a game may significantly influence subjects’ 

understanding of the optimal strategy. Experiments by Johnson and Busemeyer (2002) 

suggest that subjects, involved in a multiple-stage decision-making game, regularly 

violate dynamic consistency principle at a higher rate as the length of the decision tree 

increases. Blume & Gneezy (2000) on the other hand show that in a coordination game 

that lacks an a priori common-knowledge description, optimal learning can be severely 

impeded by the complexity of the coordination task.  

                                                 
7 See Camerer (2003, p.17) for an illustrative account of this non-equilibrium belief. Grosskopf & Nagel 
(2007) attempt to experimentally distinguish between two possible reasons that may explain why subjects 
do not play the equilibrium prediction in a two-person BCG. 
8 There are two components to one’s choice in a BCG. First, there is one’s rationality and second is one’s 
beliefs about other players’ rationality. Grosskopf & Nagel (2008) find that even in a two-player BCG in 
which one step of reasoning leads to a weakly dominant choice of 0, overwhelming majority chose 
dominated strategies. This is surprising because this game is strategically equivalent to a game of 
symmetric Bertrand price competition.  
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Gneezy et al. (2007) explore games similar to the Game of Position with l = 15 or 

17 and n = 3 or 49. Although the games are similar, their research question is entirely 

different from that of ours. We do not record response times of subjects to understand 

how quickly they understood the backward induction process as in Gneezy et al.  They do 

not study the change in the frequency of the dominant-strategy play in response to 

changes in the cognitive burdens on players, determined by the parameters of the game, 

as we do. Mckinney & Van Huyck (2006, 2007) also examine depth of strategic 

reasoning in Nim games. However a Nim game differs from the Game of Position in a 

way each sub-game is defined in both the games. Therefore our paper constitutes the first 

effort that aims to identify the limits of human reasoning in a game that differs from a 

Nim game.  

3. Design 

Our experiment has a 2X2 design (see Table 1). Specifically, we consider l = 15 

& 23, and n = 3 & 4. Crossing the two criteria, we obtain the following four games: 

g(15,4), g(15,3), g(23,4), and g(23,3). Each game is therefore distinguished by the two 

parameters, and the games vary either in l (holding n constant) or in n (holding l 

constant). Each of the four games has a first-mover advantage and a dominant-strategy 

solution. The equilibrium positions for the four games are as follows10:   

g(15, 4): 5, 10, and 15. 

g(15, 3): 3, 7, 11, and 15. 

g(23, 4): 3, 8, 13, 18, and 23. 

                                                 
9 We became aware of this paper after conducting our experimental sessions. 
 
10 If there are x number of equilibrium positions in a game, then the number of SOR to play the dominant 
strategy in that game is equal to (x-1).  
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g(23, 3): 3, 7, 11, 15, 19, and 23.  

The number in each cell in Table 1, corresponding to a particular g(.), represents 

the number of positions (SOR) that a first-mover must acquire (compute) if she were to 

play optimally. For example in g(15,3), a first-mover needs to acquire four winning 

positions, and thus finish three SOR if she were to play optimally. In contrast, in g(23,3), 

a first-mover needs to acquire six winning positions, and thus compute five SOR if she 

were to play optimally. Thus, increasing the l of a game (and keeping the n constant) 

appears to increase burden on cognition substantially. In fact, in this case it increases 

cognitive burden by two SOR. Similarly if one moves from g(15,4) to g(15,3), thus 

decreasing the n of a game and keeping the l constant, this causes the SOR to go up by 

one11. Since we already know from Ho et al. (1998) that in a BCG subjects typically use 

one to three SOR, playing optimally in some of our games may turn out to be cognitively 

burdensome for our subjects.  

However subjects may not always play a game as per the equilibrium 

prescription. Another possible way to play such a game may be to temporarily avoid the 

complex mental computations needed to search for the optimal strategy and instead adopt 

a forward-looking approach. That is, a subject in initial stages of play may choose to 

decide on a particular position by trial and error process, and see the outcome of this 

initial decision. She can again consider what she is going to do once the other player 

makes her decision, and so on. This may constitute a natural response from a subject to 

whom the game appears unknown and complex. We know however that this method of 

                                                 
11 However reducing the n may in fact ease a subject’s cognitive burden. For example, in g(15,3) a subject 
can move on to at most three positions ahead from her current position. In contrast, in g(15,4) a subject can 
move on to at most four positions ahead from her current position, thus adding one more position in her 
potential choice set, which may prove cognitively burdensome for a subject in deciphering the dominant-
strategy. 
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analysis is bound to be unsuccessful in principle if the other player has already figured 

out the optimal strategy and it may be less rewarding in practice, yet many subjects might 

adopt such a strategy. Although after playing a game for several times a subject may be 

expected to learn the dominant strategy - a scope that our experimental design permits.  

The experimental sessions were run in the CBEEL at the University of Calgary. 

The subjects of the experiment were undergraduate students registered at this university. 

The experiment consisted of 8 sessions, two sessions for each treatment. A session 

consisted of 16 participants playing a particular g(.) for 15 periods. Thus a total of (16 × 2 

× 4) 128 subjects participated in the experiment. Each subject participated in only one 

session. In each period a subject played the same game with a new opponent, i.e., no 

subject was ever matched with any other subject more than once. This perfect-stranger 

matching scheme helps in retaining the one-shot character of a game while permits only 

game and subject pool specific learning. Furthermore, this matching scheme will allow us 

to obtain multiple observations on each individual’s behavior. 

Since subjects in our experiment might need to put in significant cognitive effort 

to understand the optimal winning strategy and insignificant monetary incentives might 

induce subjects to put in less effort, we decided to strongly incentivize the paying scheme 

by paying $3 for each win and $0 otherwise. So in a session under each treatment, which 

never lasted for more than 30 minutes, a subject could win up to C$45, excluding a show 

up fee of C$5. Given that the minimum hourly wage in the province of Alberta is 

approximately C$8, winning up to C$45 in roughly 30 minutes is believed to provide 
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more than adequate incentive for subjects to put in enough effort to search for the 

equilibrium strategy12.  

The experiment was conducted using the computer. The subjects were not 

permitted to communicate with each other once the experiment had commenced other 

than by selecting their move on the computer screen using a mouse. At the beginning of 

each period, the computer randomly assigned each player one of the two possible roles: 

the first-mover or the second-mover. Each game is displayed as a series of numbers in 

boxes starting from 1 to l, depending on what value l may have taken in that session. 

When a player clicks on a box or boxes, those many boxes change their color to confirm 

her choice. This change of color also informs the rival player about the previous move 

and notifies that it is now her turn to make a decision. Each session began after subjects 

were given sufficient time to concentrate on the instructions. A session began after an 

experimenter answered all questions regarding the experiment. We did not impose any 

time limit on subjects during play, thus ensuring that time does not play any conceivable 

role in influencing subjects’ decisions in any treatment.  

4. Results 
 

The results from our experiment are discussed in the following two subsections. 

In subsection 4.1, we test our main research question using the experimental data from 

the four treatments. In subsection 4.2, we focus on whether and how subjects learn to 

carry out increasing number of SOR as play progresses in each treatment.  

4.1 Equilibrium Play 

                                                 
12 Ho et al. (1998) find that increasing the stake size has the effect of lowering number choices (i.e., 
increasing the number of SOR) in a BCG.  
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We start our analysis with the following question: In a given treatment how many 

of the total games were won by the first-movers and how many by the second-movers? 

Table 2 presents the evidence. In this analysis we do not distinguish whether a specific 

mover won a game by playing according to the dominant-strategy or not, thus only 

providing a rough estimate of the effects of the two game parameters on the first-mover 

advantage. In g(15,4), 178 of 240 games (74%) are won by first-movers whereas in 

g(23,4) this number goes down to 148 (62%). An analogous comparison between g(15,3) 

and g(23,3) shows a similar effect, but the number decreases slightly from 150 (63%) to 

148 (62%). Investigating further the effect of varying the n, we find that between the 

treatments g(15,4) and g(15,3) the percentage of games won by first-movers goes down 

from 74 to 63. In contrast, these percentages do not change between the treatments 

g(23,3) and g(23,4). Overall, as the number of SOR (associated with the dominant-

strategy play) increases across the four treatments, the number of games won by first-

movers decreases, and this decline is weakly monotonic in nature.  

We now proceed to consider our main research question posed in Section 1. For 

this purpose we introduce an index, which we call the Index of the Power of Reasoning 

(IPOR). IPOR can assume an integer value between 0 and m (both inclusive) for a player. 

m represents the SOR that a player must compute in a game to play according to the 

dominant-strategy prediction, and m = 2, 3, 4, and 5 in g(15,4), g(15,3), g(23,4), and 

g(23,3), respectively. For example, a player with an IPOR = 0 implies that she won a 

game without carrying out a single step of reasoning. A player with an intermediate value 

of IPOR (i.e., 0 < IPOR < m) implies that she won a game by carrying out only some of 

the SOR (from the end of the decision tree) involved in the dominant-strategy play in that 
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game. As a result of this classification, a first-mover with an IPOR = m in a given game 

means that the first-mover is a dominant-strategy player13. In other words, that first-

mover had fully exploited the advantage of moving first in that game.    

Having fixed these definitions, we can now focus on the following question: Does 

altering the l of a Game of Position while keeping the n constant influence the occurrence 

of the dominant-strategy play? Table 3 reports the aggregate equilibrium statistics. Out of 

a total of 240 games in g(15,4), 156 (65%) are played according to the dominant-strategy 

(by the first-movers), while in g(23,4), only 72 of 240 (30%) games are played according 

to the dominant-strategy. So, on an aggregate basis a two-step increase in the reasoning 

process between these two games, from two to four, lowers the incidence of the 

dominant-strategy play by 35 percent.  Focusing on the other two treatments, the 

corresponding figures are 128 (53%) and 92 (38%) in g(15,3) and g(23,3), respectively. 

Again a two-step increase in the reasoning process, from three to five, decreases the 

percentage of the dominant-strategy play by 15 percent. Thus a two-step increase in the 

iterated reasoning process in the two cases leads to significantly different levels of 

reduction in the dominant-strategy play14. Therefore, our first main result is that an 

                                                 
13 Note that a first-mover may occupy all the equilibrium positions in a game but she still may not play 
according to the dominant-strategy. Thus she would not qualify as an equilibrium player in our analysis. To 
see this let us consider an example. Suppose in g(15,4) a first-mover starts at position 1 and moves onto 
position 3, a move not in accordance with the dominant-strategy play if that player had understood the 
optimal strategy. The second-mover however moves from position 3 to position 4, indicating that she did 
not realize the dominant-strategy play either. Now our first-mover moves on to positions 5, 10, and 15 in 
her next three decisions, given the second-mover’s decisions in between. In this case the first-mover wins 
the game but does not play according to the dominant strategy since she did not move from position 1 to 
position 5 in just one step. In the following analysis we regard a first-mover as an equilibrium one (i.e., 
IPOR = m for that player in a given game) if she occupies only the equilibrium positions in a game and 
does not occupy any other position(s) between any two consecutive equilibrium positions in that game. 
This criterion applies to second-movers as well.  
14 The difference in the proportion of first-movers playing flawlessly in g(15,4) and the proportion of first-
movers playing flawlessly in g(23,4) is highly significant (Z statistic = 7.59, p = 0). The difference in the 
proportion of first-movers playing flawlessly in g(15,3) and the proportion of first-movers playing 
flawlessly in g(23,3) is also highly significant (Z statistic = 3.21, p = 0.00). 
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increase in the l of a Game of Position, while holding the n fixed, leads to a statistically 

significant reduction in the incidence of the dominant-strategy play at an aggregate level.  

Next we turn to the question whether altering the n of a Game of Position while 

keeping the l constant affects the occurrence of the dominant-strategy play? To answer 

this question, we refer back to Table 3. The aggregate data indicate that the proportion of 

the dominant-strategy play drops from 65 to 53 percent between the treatments g(15,4) 

and g(15,3). However the same figure registers a 8 percent (from 30 to 38 percent) 

increase between the treatments g(23,4) and g(23,3). So, a one-step increase in the 

reasoning process, induced by a reduction in n while keeping l fixed, generates entirely 

different effects in games with different l
15. Thus our second main result is that a 

decrease in the n of a Game of Position, while holding the l fixed, leads to a statistically 

significant reduction in the incidence of the dominant-strategy play for the treatment pair 

g(15,4) and g(15,3) at an aggregate level. However a similar change in the n leads to a 

statistically significant increase in the incidence of the dominant-strategy play for the 

treatment pair g(23,4) and g(23,3) at an aggregate level.  

Overall this provides compelling evidence that the dominant-strategy play may 

have been considerably influenced by a change in l or n
16. Additionally, ranking the 

games from the easiest to the most difficult (in terms of the number of SOR as per the 

dominant-strategy play), we find that the occurrence of the dominant-strategy play 

steadily declines as one moves from g(15,4) to g(15,3), and to g(23,4), indicating a 
                                                 
15 The difference in the proportion of first-movers playing flawlessly in g(15,4) and the proportion of first-
movers playing flawlessly in g(15,3) is highly significant (Z statistic = 2.58, p = 0.01). The difference in the 
proportion of first-movers playing flawlessly in g(23,3) and the proportion of first-movers playing 
flawlessly in g(23,4) is also highly significant (Z statistic = 1.75, p = 0.04). 
16 The probability that a player has not understood the dominant-strategy play at all but did occupy all the 
wining positions is (1/4)3 in g(15,4). The same probabilities in the games g(15,3), g(23,4), and g(23,3) are 
(1/3)4, (1/4)5, and (1/3)6 , respectively. Given that these probabilities are extremely low, these aggregate 
statistics provide some enough reason to believe that subjects might have understood the optimal play. 
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negative relationship between the frequency of the dominant-strategy play and the 

number of SOR (a possible indicator of cognitive burden). However thereafter it registers 

a slight increase in g(23,3), thus making the relationship non-monotonic.   

The negative difference in the proportion of the dominant-strategy play between 

g(23,4) and g(23,3) is somewhat counterintuitive because g(23,3) involves an extra step 

of reasoning relative to g(23,4), and therefore requires presumably more mental 

computations. However the incidence of the dominant-strategy play is statistically higher 

in g(23,3) than in g(23,4). So, g(23,4) turns out to be ex post the most difficult game for 

our subjects to play. Why? We offer the following conjecture. Let us continue with our 

maintained assumption that the dominant-strategy play in games with higher l are 

cognitively more challenging than that of in games with lower l. Now g(23,4) provides a 

subject with an option to move on to one of the four positions ahead from her current 

position, whereas g(23,3) provides a subject with an option to move on to one of the three 

positions ahead from her current position. Given that the games characterized by longer 

decision tree are already more difficult to play, an increase in n from 3 to 4 in games with 

l = 23 may translate into higher marginal cognition load for a subject in terms of how 

many potential choices she has in the game with n = 4. This may in turn adversely affect 

the process of deciphering the dominant-strategy play in g(23,4) relative to g(23,3). In 

contrast, an increase in n from 3 to 4 in games with l = 15 may not necessarily translate 

into higher marginal cognition load for a subject, simply because games with lower l are 

seemingly cognitively less challenging. Moreover, in g(15,4) the equilibrium positions 

take the form of multiple-of-five, which may help a subject even more to decipher the 

dominant-strategy play as compared to g(15,3).  



 18

Recall that a second-mover who has already reasoned out the dominant-strategy 

play will occupy all the remaining equilibrium positions if a first-mover failed to play 

according to the dominant-strategy in the previous move. To capture the effect of a 

change in either l or n (and keeping the other parameter constant) on the equilibrium play 

by the second-movers, we conducted the following analysis. 

In this analysis we classify a second-mover as an equilibrium player if she 

occupied all the equilibrium positions from the point where she obtained the earliest ever 

opportunity to do so. However when a second-mover wins a game by securing only the 

final position (i.e., IPOR = 0) and that constitutes her earliest available opportunity to 

secure an equilibrium position in that game and therefore does not compute a single step 

of reasoning, we are never sure whether that second-mover realized the dominant-

strategy play or not17. Hence we do not consider a second-mover with IPOR = 0 as an 

equilibrium player. To sum it up, a second-mover is regarded as an equilibrium player in 

the following analysis only if she did not miss any opportunity to occupy all the wining 

positions from the earliest available point and computed at least one step of reasoning to 

reach the final position (i.e., secured at least the last two equilibrium positions in a game; 

m ≥ IPOR ≥ 1 for that player).  

One should be cautious when using the above definition of the equilibrium 

second-mover, as this notion may be an imperfect measure of a second-mover’s 

reasoning capacity. Apart from the case mentioned in the immediately preceding 

paragraph, there could be few more potential situations when we cannot know for sure 

                                                 
17 There are a total of 10 (1%) such cases out of a total of 960 cases in our experiment where a second-
mover won a game without carrying out a single step of reasoning and that constituted her first ever 
opportunity.  



 19

whether a second-mover realized the equilibrium strategy or not. For example, a second-

player may secure positions 18 and 23 in g(23,4), and we categorize her as an equilibrium 

second-mover with IPOR = 1 (if 18 was the earliest equilibrium position available to this 

player). In this instance two possible things may have happened. Either a second-mover 

had realized the equilibrium play all along but simply did not get an opportunity to secure 

any equilibrium position other than the last two winning positions, or, she simply had not 

identified the equilibrium play path and just stumbled onto those two positions without 

realizing that those are the equilibrium ones. In this case we will overestimate our 

measure of the equilibrium second-mover by including her as an equilibrium player. A 

little reflection however makes it clear that it may be quite impossible to come up with a 

measure that does not suffer from some level of imperfection while attempting to classify 

a second-mover as an equilibrium player. In case of first-movers however there remains 

no such ambiguity since the chance is extremely low that a first-mover would simply 

stumble onto all the equilibrium positions. In order to remedy this limitation, we will 

focus on the aggregate data while statistically testing the extent of second-movers’ 

equilibrium play across treatments. We hope that by doing so we can level off some of 

the noise due to imperfection.  

We now turn our attention to how a change in the l of a Game of Position (and 

holding the n constant) affects the frequency of the equilibrium play by the second-

movers. The evidence is in Table 4. The second row of the table reports, for each 

treatment, how many ‘first-ever’ opportunities second-movers had obtained to potentially 

occupy all the remaining equilibrium positions in a game and out of that how many times 
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they actually occupied all those positions from that point beyond 18. Following this row 

from left to right one can deduce that such opportunities increased in sheer magnitude 

(from 80 to 142) as playing the dominant-strategy for the first-movers presumably 

became increasingly (cognitively) difficult.  

Did altering the l and keeping the n fixed influence second-movers’ equilibrium 

play? The answer is yes according to the second row of table 4. The aggregate data (row 

two) indicate that the second-movers were able to compute at least one step of reasoning 

and win a game in 42/80 (53%) instances in g(15,4), whereas in g(23,4) the percentage 

drops to 42 (62/148), indicating a reduction (11%) in the equilibrium second-movers. The 

reduction (16%) is more pronounced between the treatments g(15,3) and g(23,3). A 

statistical analysis of the aggregate data confirms that increasing the l (and keeping the n 

constant) have adversely affected the performance of the equilibrium second-movers in 

both cases19.    

However the conclusion drawn in the preceding paragraph definitely suffers from 

some imprecision due to the chance factor. In the above aggregate analysis we have 

added up all types of equilibrium second-movers (i.e., 1 ≤ IPOR ≤ m) in a treatment to 

arrive at that conclusion. But a second-mover with 1 ≤ IPOR < m in a treatment may 

actually have played so by mere chance and for no clever reason whatsoever. In that case, 

our conclusion about the impact of increased l on the proportion of the equilibrium 
                                                 
18 To explain how we obtain these numbers, let us consider an example. In g(15,4), say, a first-mover lands 
on position 4 (thus not playing the dominant-strategy), then the second-mover can play the dominant- 
strategy from that point onwards by computing two SOR and win the game. In our analysis this is counted 
as one opportunity for a second-mover to play the dominant-strategy. We do not consider this game again 
to detect a lower SOR opportunity for the same second-mover.  
19 The difference in the proportion of second-movers computing at least one step of reasoning in g(15,4) 

and the proportion of second-movers computing at least one step of reasoning in g(23,4) is significant (Z 
statistic = 1.45, p = 0.07). The difference in the proportion of second-movers computing at least one step of 
reasoning in g(15,3) and the proportion of second-movers computing at least one step of reasoning in 
g(23,3) is highly significant (Z statistic = 2.32, p = 0.01). 
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second-movers is somewhat misleading. In order to allay this concern we conducted an 

additional analysis. We consider the proportion of those second-movers in each treatment 

who, just like an equilibrium first-mover in a game, played the dominant-strategy by 

computing all the SOR in a game (i.e., IPOR = m for these equilibrium second-movers). 

This way of analysis avoids the above-mentioned ambiguity and helps us answer the 

question in the most possible clear-cut manner given our data.  

In g(15,4) when IPOR = m = 2, 26 of 64 (41%) games correspond to the 

dominant-strategy play by the second-movers whereas in g(23,4) when IPOR = m = 4, 4 

of 14 (29%) games correspond to the dominant-strategy play by the second-movers. 

However between the treatments g(15,3) and g(23,3), the occurrence of the dominant- 

strategy play by the second-movers drops dramatically from 50 percent to 24 percent20. 

This gives our third main result that an increase in the l of a Game of Position, while 

holding the n fixed, leads to a statistically significant reduction in the proportion of the 

second-movers computing at least one step of reasoning (from the very end of the game 

tree) when we consider the aggregate data. The same increase in the l leads to a 

statistically significant reduction in the incidence of the dominant-strategy play by the 

second-movers for the treatment pair g(15,3) and g(23,3) when we consider the IPOR = 

m data, but
 
not so for the treatment pair g(15,4) and g(23,4).  

Did altering the n and keeping the l fixed influence second-movers’ equilibrium 

play? When we look at the second row of table 4, i.e., considering the aggregate play 

data, we find that the proportion of the equilibrium second-movers, computing at least 
                                                 
20 IPOR = m data: The difference in the proportion of second-movers playing the dominant-strategy in 
g(15,4) and the proportion of second-movers playing the dominant-strategy in g(23,4) is not significant (Z 
statistic = 0.53, p = 0.3). The difference in the proportion of second-movers playing the dominant-strategy 
in g(15,3) and the proportion of second-movers playing the dominant-strategy in g(23,3) is highly 
significant (Z statistic = 2.26, p = 0.02).    
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one step of reasoning, does not change between g(15,4) and g(15,3). The proportion 

decreases from 42 percent in g(23,4) to 37 percent in g(23,3). When we consider the 

proportion of those second-movers with IPOR = m, we find that the proportion of this 

type of equilibrium second-movers increases from 41 percent in g(15,4) to 50 percent in 

g(15,3). The proportion decreases from 29 percent in g(23,4) to 24 percent in g(23,3)
 21.  

This gives our fourth main result that a decrease in the n of a Game of Position, while 

holding the l fixed, does not lead to any statistically significant difference in the incidence 

of the equilibrium play by the second-movers for any treatment pair when we consider 

either the IPOR = m data or the aggregate data. 

To sum up, the above analyses uncover that the dominant-strategy play is 

negatively correlated with the l of a Game of Position (holding the n fixed); however the 

effect of decreasing the n (holding the l fixed) of a Game of Position on the optimal play 

is somewhat unambiguous. A decrease in n lowers the frequency of the dominant-

strategy play between the shorter planning horizon games, but leads to a rise in the 

dominant-strategy play between the longer planning horizon games. These results seem 

to suggest that in general limiting cognitive constraint may help achieve higher 

proportion of the dominant-strategy play.  

4.2 Learning 

The previous analyses of the aggregate data seem to suggest that subjects in our 

experiment might have learnt to play the dominant-strategy as play progressed. In order 

to focus on how learning about the dominant-strategy play occurs in each treatment, we 

concentrate on the time series of the aggregate and individual play data in this subsection. 
                                                 
21 Again we conducted the above two types of statistical tests, one using the aggregate data and the other 
using the data with IPOR = m for the second-movers. None of the tests came out to be significant at usual 
levels of significance.  
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We start this analysis with the evolution of the dominant-strategy play. Figure 2 

presents the time series of the proportion of the equilibrium first-movers in each 

treatment. A casual inspection reveals that overall incidence of the dominant-strategy 

play is higher in treatments with fewer SOR. In the very first period, when subjects did 

not have any prior experience, 25 percent first-movers played according to the dominant-

strategy in g(15,4), while corresponding figures are 13, 0, and 0 for g(15,3), g(23,4), and 

g(23,3), respectively. With experience, the proportion of the equilibrium first-movers 

increased in all the treatments, however at different rates. In the final period, the 

proportion of the equilibrium first-movers is 0.88 in g(15,4) and g(23,3), and the 

corresponding figures are 1 and 0.5 in g(15,3) and g(23,4) respectively. As expected, the 

winners in later periods were primarily determined by the assignment of the first-mover 

role in all the treatments except in g(23,4). While the figure provides enough evidence 

that first-movers in a given treatment played the dominant-strategy with greater 

frequency with the repetition of the stage game, it does not offer any information as to 

what proportion of subjects in a given treatment actually learnt the dominant-strategy 

play. We take up this issue next.  

The observed difference in the incidence of the equilibrium first-movers in later 

periods in g(23,4) as compared to the other three treatments may arise due to two reasons. 

First, a larger proportion of the subject population in g(15,4), g(15,3), and g(23,3) may 

have learnt to play the dominant-strategy as compared to g(23,4). Second, even if the 

proportion of the subject population who had learnt to play the dominant-strategy remains 

the same in each treatment, the subjects who had learnt to play the dominant-strategy 
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may have happened to get less opportunities to play as first-movers in g(23,4) than in 

g(15,4), g(15,3), and g(23,3). The following analysis sheds light on this issue.  

Figure 3 presents the frequency distribution of players as the first-mover in all 

four treatments. Note that a player can get zero to 15 opportunities to play the role of a 

first-mover in a treatment as each session had 15 periods and the computer assigned the 

role of a first-mover in a random manner. The empirical distribution as represented in 

figure 3 closely follows a theoretical Binomial distribution with a mean equal to 7.5 and a 

variance equal to 3.75. The realized mean of first-mover opportunities is exactly equal to 

7.5 in each treatment and the highest frequency in each treatment concentrates in the 

interval of 5-922. Therefore the distribution of the role-assignment did not differ markedly 

across the treatments. In other words, the number of times a subject was chosen a first-

mover did not differ much on average across treatments. Hence we conclude that it 

cannot be the case that on average the subjects who had learnt to play the dominant-

strategy may have happened to get considerably fewer opportunities to play as first-

movers in one treatment as compared to another. Next we investigate whether the 

proportion of the subjects who learnt to play the dominant-strategy differs considerably 

across treatments, which may explain the observed difference in the incidence of the 

equilibrium first-movers in later periods between g(23,4) relative to the other three 

treatments. 

Figure 4 presents, for each treatment, the cumulative distribution of players across 

time who had played according to the dominant-strategy prediction (both mover-types 

                                                 
22 We also conducted the same analysis for the last eight periods in which the theoretical Binomial 
distribution has a mean equal to 4 and a variance equal to 2. The mean first-mover opportunity is exactly 
equal to 4 in each treatment and the highest frequency in each treatment concentrates on the interval of 3-5 
in this case. 
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with IPOR = m) at least once. The difference between the proportions in period (t+1) and 

t in a given treatment thus reflects the addition of players to the pool of existing players 

who have already played the optimal strategy at least once.  

In the first period when no element of experience exists, the dominant-strategy 

play is the highest in g(15,4) and the lowest in g(23,3).   By the final period, the 

proportion of players who had played according to the dominant-strategy prediction at 

least once is the highest in g(15,3), followed by g(15,4), g(23,3), and g(23,4). In the last 

period, this proportion is 0.56 in g(23,4) whereas the numbers are considerably higher in 

the other three treatments: 1, 0.94, and 0.81 for g(15,3), g(15,4), and g(23,3), 

respectively. These numbers therefore shed some light on why g(23,4) may have emerged 

ex post the most difficult game in our experiment. The cumulative distributions 

corresponding to the treatments with smaller l lie strictly above that of the treatments 

with larger l. The data therefore suggest that greater cognitive burden imposed by 

relatively longer planning horizons may have reduced the proportion of such players. 

Furthermore, the cumulative distributions corresponding to the treatments with smaller n 

lie strictly above that of the treatments with larger n (controlling for l) in later periods. 

More importantly, this difference is strikingly higher for the pair g(23,3) and g(23,4) than 

for the pair g(15,3) and g(15,4) in last few periods. This extends some support to our 

earlier conjecture that reducing the n (holding l fixed) may have eased a subject’s 

cognitive burden more in longer decision-tree games. 

While the previous analyses are suggestive of the possibility that subjects 

gradually learnt the dominant-strategy play in each treatment and this learning differed 

across treatments, they however fall short of identifying the actual learning patterns that 
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have emerged in each treatment. In order to gain further insights into whether and how 

players actually learnt about the dominant-strategy play in each treatment, we conducted 

two types of analyses.  

First, we consider the time series of the distribution of IPOR in each treatment. 

Figure 5-8 represent the time series for g(15,4), g(15,3), g(23,4), and g(23,3), 

respectively23. This will inform us whether at an aggregate level subjects had learnt to 

compute higher number of SOR as a treatment advanced. That is, on average whether 

subjects learnt to compute the very first step of reasoning (from the very end) at the 

beginning, then the first two SOR, and so on, and finally the entire chain of the reasoning 

process in a given treatment. If this were the case, then we would expect the occurrences 

of the higher-valued IPOR to increase over time in a given treatment.  

In the first period of each treatment with the exception of g(15,4), the proportion 

of IPOR = m is strictly lower and the proportions of lower-valued indices are 

considerably higher, indicating that initially a greater fraction of subjects in a given 

treatment may have found it cognitively difficult to carry out all the SOR. In contrast, in 

g(15,4) the shares of IPOR = m and 0 ≤ IPOR < m are exactly equal in the first period. 

This indicates that subjects in this treatment have found it the easiest to figure out the 

optimal play relative to other treatments. The incidence of play governed by IPOR = m 

increased steadily in g(15,4), g(15,3), and g(23,3) in later periods, while this trend is not 

so sharp in g(23,4) in which even in the last period only 50 percent of all games 

correspond to a play governed by IPOR = m. The consistent increase in the incidence of 

                                                 
23 Note that this analysis pools the data for both types of movers.  
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IPOR = m with progress of play in all the treatments provides evidence that on an 

aggregate basis subjects gradually succeeded in figuring out the dominant-strategy play 

in each treatment as opposed to just occupying the equilibrium positions at random. 

Furthermore, this success rate differs considerably between g(23,4) and the other three 

treatments. We also observe that the occurrences of the non-equilibrium play (IPOR < m) 

exhibit a faster trend of decay in treatments with l = 15 than in treatments with l = 23. 

This decline is the fastest in g(15,4) and the slowest in g(23,4). This accords well with 

out previous finding that the fractions of subjects who played the dominant-strategy play 

at least once are smaller in games with l = 23 than in games with l = 15.  Overall, these 

findings indicate that initially many subjects were unable to detect the full chain of 

reasoning required for the dominant-strategy play and instead could compute only last 

few SOR that are needed to win a game. Alternatively, they may have been entirely 

clueless about the dominant-strategy play and plausibly adopted a forward-looking 

approach. 

While the evolution of the IPOR in each treatment provides clear indication of the 

learning of the dominant-strategy play at an aggregate level (i.e., on average subjects 

simply did not stumble onto the equilibrium positions), it is still unclear from these 

analyses whether an individual subject really learnt the dominant-strategy play in each 

treatment. One way of detecting individual learning of the optimal play is to check if a 

subject who had played the dominant-strategy in period t ever faltered to play optimally 

in subsequent periods. If a subject simply stumbled on to the equilibrium positions and 

had no clue about the dominant-strategy play, then a subject playing the equilibrium 

strategy in t may very well fail to play the equilibrium strategy in period (t + j), if she is 
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faced with an opportunity to play the dominant-strategy in period (t + j). But if a subject 

occupied all the equilibrium positions in period t and also understood the optimal 

strategy, then she would never miss a future opportunity to play according to the optimal 

strategy regardless of whether all the SOR or a few of them remain to be computed.  

Figure 9 presents the distribution of the individual errors as a proportion of actual 

opportunities where an error is defined as: after a subject i attained her first IPOR = m, 

that subject i either missed an opportunity to play the dominant-strategy in the role of a 

first-mover in any subsequent period or missed an opportunity of ‘equilibrium play’ as a 

second-mover in any subsequent period24.  For each subject i, we express the total 

number of such errors as a proportion of the total number of such opportunities. The 

figure displays the distribution of such proportions for all subjects in a given treatment. In 

this analysis, we do not include a player who has already attained her first IPOR = m, but 

did not get any opportunity of equilibrium play in further periods because she was always 

chosen as the second-mover in these later periods and her opponents had always played 

the dominant-strategy on those occasions. We also do not include the second-movers 

with IPOR = 0 in this analysis.  

The figure reveals two important behavioral regularities about individual learning 

of the dominant-strategy play. First, in all treatments except g(15,3) the error value zero 

achieves the highest frequency. 88 percent of subjects in g(23,4) who ever played the 

dominant-strategy in a previous period did not falter to play the equilibrium strategy in 

subsequent periods whenever such opportunities came on her way. The same percentages 

are 67, 67, and 13 in g(23,3), g(15,4), and g(15,3), respectively. Therefore the first 

                                                 
24 Recall that equilibrium play for a second-mover implies that the player did not make any mistake in 
occupying the equilibrium positions from the earliest position available to her in a game. 
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occurrence of IPOR = m provides a good indicator of individual learning of the 

dominant-strategy play in all three treatments except in g(15,3)
25. Second, even though 

relatively smaller fractions of subjects played the dominant-strategy at least once in 

games with l = 23 than that of in games with l = 15 (as indicated by the final period data 

of Figure 4), it appears that the first occurrence of IPOR = m is a better indicator of 

individual learning of the dominant-strategy play in games with l = 23 than in games with 

l = 15 as the proportion of players with zero subsequent errors in equilibrium plays is 

much higher in games with larger l. 

To sum up, the observed learning trends indicate that experience helped in 

boosting the equilibrium play in all the treatments. The aggregate data from all four 

treatments indicate that subjects were able to compute few SOR in the initial periods, but 

gradually learnt to carry out higher SOR. The data on individual subjects provide 

substantial evidence that once subjects play in accordance with the optimal strategy; they 

mostly adhere to that play from that point onwards.  

5. Conclusions 
 
 Most optimal economic decisions presume substantial amount of rationality, which 

in turn calls for sufficient cognitive power. However human cognition is not limitless. A 

voluminous literature hitherto has demonstrated that beyond a certain level of 

complication, humans’ logical machinery ceases to function – a sign of bounded 

rationality. How this limited cognitive capacity, represented by finite depth of reasoning, 

interacts with economic decisions and influences quality of economic outcomes is a 

question of immense importance to economists. 

                                                 
25 We do not have any well grounded explanation for this observed random pattern of individual play in 
g(15,3).  
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 This paper experimentally studies a two-player two-outcome strictly competitive 

game with perfect information to explore the above issue. We call this the Game of 

Position that is characterized by a first-mover advantage and a dominant-strategy 

solution. The equilibrium strategy involves a multi-stage iterative reasoning procedure 

and is independent of players’ beliefs about each other. Hence the structure of the game is 

especially favorable for a pure and in-depth examination of reasoning capacity of 

individual players. Alongside this, the game captures essential aspects of many important 

economic decisions like financial planning for retirement, working towards a degree, 

working for a targeted weight reduction etc. that also require multi-stage decisions 

consisting of a series of interdependent stages leading towards a final outcome. Hence the 

game offers an ideal environment in which we can test the obvious connection between 

human reasoning-skill and quality of economic outcome.   

 The Game of Position is defined by two parameters, the length (l) of the decision 

tree and the maximum steps (n). These parameters jointly determine how many steps of 

reasoning a player must compute to play in accordance with the dominant-strategy. We 

generate four Games of Position by altering l and n, and thereby we vary the cognitive 

demands on players in a systematic manner, and assess its impact on the dominant-

strategy play. Conditional on our maintained assumption that figuring out increasing 

number of steps of reasoning commands higher cognitive effort by players, the laboratory 

scrutiny of each game therefore enables us to directly observe whether the incidence of 

the optimal play declines as reasoning process becomes increasingly complicated across 

the games.  



 31

The main result is that the frequency of the dominant-strategy play sharply 

increases as we limit the cognitive demand on players. The data indicate that the 

incidence of the equilibrium play is inversely related to the l (holding n constant), but the 

effect of varying the n (holding l constant) on the dominant-strategy play is not 

unambiguous. The analysis of the equilibrium play data thus implies that an optimal 

multi-stage planning process can be severely impeded by the intricacy of the task-related 

reasoning procedure. Our analysis also sheds light on subjects’ learning pattern of the 

equilibrium play. The results show that initially many subjects won a game by computing 

only the last few steps of the sequential reasoning process, but after gaining enough 

experience majority of them learn to decipher additional steps of reasoning and thus play 

the dominant-strategy. We conjecture that this pattern of play may arise due to subjects’ 

inability to carry out all the steps of reasoning except the last few steps in initial stages of 

the play, or may be due to subjects’ initial tendency to play according to an ad-hoc 

forward-looking approach. Thus learning the optimal strategy by gradual experimentation 

is another way to think of our results. 

How optimal decision in a game is closely intertwined with players’ cognitive 

capacity players is an important issue for economists. Laboratory techniques may be 

immensely helpful in revealing processes by which players make certain payoff-

maximizing decisions in games. This is an important line of research because economic 

outcome is mostly governed by players’ behavior and this behavior in turn is controlled 

by human cognition. Yet, only recently have economists begun to take interest in this 

obvious connection between human mind and economic decisions. Our research may be 

thought of as a small step towards understanding this relationship. 
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Figures 

 
Figure 1. The equilibrium play in the Game of Position g(23,3) 

 

Note: X denotes an equilibrium position for a first-mover. 
 

Figure 2. Time series of proportion of the equilibrium first-movers by treatment 
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Figure 3. Frequency distribution of players in the role of first-mover by treatment 
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Figure 4. Cumulative distribution of players characterized by IPOR ==== m at least 

once by treatment 
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Figure 5. Distribution of IPOR in g(15,4) 
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Figure 6. Distribution of IPOR in g(15,3) 
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Figure 7. Distribution of IPOR in g(23,4) 
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Figure 8. Distribution of IPORs in g(23,3) 
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Figure 9. Distribution of errors as proportion of opportunities after the occurrence 

of first IPOR ==== m 
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      Tables 

 
Table 1. Number of equilibrium positions (number of SOR) by game-type  

   

Maximum Steps (n) 4 3 

Decision Tree 

Length (l) 

15 
3 

(2) 
4 

(3) 

23 
5 

(4) 
6 

(5) 
Note: Figures in parentheses denote the number of SOR associated with the dominant-strategy  
 

 

Table 2. Distribution of games won by each mover-type  

 
Treatment 

���� 

Mover-type 
���� 

g(15,4) g(15,3) g(23,4) g(23,3) 

First-Mover 
178 

(0.74) 
150 

(0.63) 
148 

(0.62) 
148 

(0.62) 
Second-

Mover 

62 
(0.26) 

90 
(0.37) 

92 
(0.38) 

92 
(0.38) 

Total Games 240 240 240 240 
Note: Figures in parentheses denote proportion of the total games 

 

 

Table 3. Dominant-strategy play by the first-movers 
 

Treatment ���� g(15,4) g(15,3) g(23,4) g(23,3) 

The Dominant-

Strategy Games 

156     
(0.65) 

128     
(0.53) 

72      
(0.3) 

92     
(0.38) 

Total Games 240 240 240 240 

Note: Figures in parentheses denote proportion of the total games 
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Table 4. Distribution of equilibrium second-mover IPORs by treatment 

 

Treatment ���� g(15,4) g(15,3) g(23,4) g(23,3) 

All IPORs 
42/80 
(0.53) 

52/98 
(0.53) 

62/148 
(0.42) 

52/142 
(0.37) 

          IPOR ==== 1 
16/16 
(1.00) 

10/22 
(0.45) 

4/8  
(0.5) 

2/2  
(1.00) 

IPOR ==== 2 
26/64 
(0.41) 

24/40 
(0.60) 

16/40 
(0.4) 

4/4  
(1.00) 

IPOR ==== 3 - 
18/36 
(0.50) 

38/86 
(0.44) 

8/32 
(0.25) 

IPOR ==== 4 - - 
4/14 

(0.29) 
26/54 
(0.48) 

IPOR ==== 5 - - - 
12/50 
(0.24) 

 Note: Figures in parentheses denote proportion of all the feasible opportunities received by second-

movers for that IPOR type 

 

 

 
 

 
 

 
 


